
International Journal of Technology Management & Humanities (IJTMH) 

e-ISSN: 2454 – 566X, Volume 4, Issue 4, (December 2018), www.ijtmh.com 

December  2018 1 | P a g e www.ijtmh.com 

 

 

Finding Most Feasible Path in Weighted Control Flow Graph of a 

C Program for Testing Optimization 

Author 

1
Vikas Agrahari, 

2
Shubha Jain 

1
(Research Scholar/M.Tech(CSE)/K.I.T Kanpur, Uttar Pradesh (India)) 

2
(Associate professor/ Dept of CSE/K.I.T Kanpur, Uttar Pradesh (India)) 

 

Abstract 

 
An effective testing can reduce the cost and time considerably. In this study our aim is to design a 
software tool that will compute the most feasible path for all programs in C language. Finding of most 
feasible path requires a construction of weighted control flow graph, which helps in determining the 
frequency of all paths in control flow graph and finally most frequent path(as the weight decides the 
frequency) is termed as most feasible path. Concept of most feasible path makes the test data generation 
easy and in optimized manner and also act as an effective tool for efficient testing of entire software. 

Key Words : CFG, Cyclomatic Complexity, Edge Weight, Path Frequency 

 

 

1. Introduction 

The problem is related to software testing and this paper helps in designing the test cases 

optimally by finding the most feasible path in weighted control flow graph of a C program. 

In first module, we generate the simple control flow graph by identifying all the tokens of a 

program and then calculating the closed region in control flow graph which is useful for 

calculating cyclomatic complexity of code. Then after we find out the independent paths in our 

program using adjacency matrix. 

In second module, we generate the weighted control flow graph by assigning the weight on to 

the edges of simple control flow graph by using different methods. Using this weighted control 

flow graph we generate the most feasible path from source node to destination node. So our 

project does following four tasks based upon the input program: 

 Drawing of Control flow graph of the given input program. 
 Determining Cyclomatic Complexity for finding independent paths of program using 

graph matrix of Control flow graph. 

 Drawing of Weighted Control Flow graph by using three different methods. 

 Determining most feasible path using Weighted Control Flow graph. 

These two modules play an important role in the project. The project uses the advance 

features of C library for generating window and printing date of the System. While working 

through task that creates, develop & display this C compliant application, we have used many 

different library functions, graphics and console applications. 

 

2. Specification 
 

This software tool will take as its input, a program or code in C language, draws CFG, calculate 

Cyclomatic Complexity and no. of independent paths then at last find out most feasible path of 



International Journal of Technology Management & Humanities (IJTMH) 

e-ISSN: 2454 – 566X, Volume 4, Issue 4, (December 2018), www.ijtmh.com 

December  2018 2 | P a g e www.ijtmh.com 

 

 

the program on the basis of frequency of nodes in the CFG. The data structure used here is a 

weighted control flow graph and weights are decided on the basis of three different techniques. 

 

2.1 Design 

There are three different methods for finding the frequency of all paths in Control Flow Graph 

and they are- number of statements, time of execution and memory used methods for 

determining the frequency of paths and finally for finding most feasible path (the one with 

highest frequency). The design of this software tool can be specified by the following steps: 

 Draw the control flow graph for the given application. 

 Show different paths covered in control flow graph. 

 Determine the cyclomatic complexity of the software and find the number of 

 Independent paths by using graph matrix. 

 Determine frequencies of all paths(using any of the above three methods) 

 Draw weighted control flow graph 

 Find most feasible path out of them. 

3. Software Testing Fundamentals 
 

Fig 1: Software Testing Fundamental 

3.1. The Nature of Software Defects 

Logic errors and incorrect assumptions are inversely proportional to the probability that a 

program path will be executed. General processing tends to be well understood while special 

case processing tends to be prone to errors. We often see that a logical path is not likely to be 

executed when it may be executed on a regular basis. Our unconscious assumptions about 

control flow and data lead to design errors that van only be detected by path testing. Typing 

errors cannot be predicted. 

 

3.2. Basis Path Testing 

This method enables the designer to derive a logical complexity measure of a procedural design 

and use it as a guide for defining a basis set of execution paths. It is a white box technique which 

analyzes the CFG. Test cases that exercise the basis set are guaranteed to execute every 

statement in the program at least once during testing. 



International Journal of Technology Management & Humanities (IJTMH) 

e-ISSN: 2454 – 566X, Volume 4, Issue 4, (December 2018), www.ijtmh.com 

December  2018 3 | P a g e www.ijtmh.com 

 

 

 

 
Fig 2: Basis Path Testing 

3.3. Code Complexity Metrics 

Most of the time, these jobs are non-trivial due to the complexity of most code. At least four 

items can make things complex: the obvious problem of understanding what is written, what the 

code is supposed to do, both at the macro and micro level the environment in which the code is 

to run, and the assumptions made about each of these things. 

 

A lot of tools are available to help sort out each of these issues. Few programs out there, 

however, try to measure the complexity of the code
[1]

. We define complexity of code as the 

amount of effort needed to understand and modify the code correctly. As we explain in this 

article, computing complexity metrics often is a highly personal task. Also, few metrics have 

been shown to be of real value in determining the amount of effort needed to test the code. 

 

Performance metrics measure, how well a valid program executes. Profiling tools fall into this 

category, and many tools are available. But for maintenance metrics, there are surprising few 

tools. Therefore, this column concerns creating maintenance metric tool that measures 

complexity. It can be used as a prototype for general tools in other languages. 

 

3.3.1. Software Complexity Measurement 

Software complexity is one branch of software metrics that is focused on direct measurement of 

software attributes, as opposed to indirect software measures such as project milestone status 

and reported system failures. There are hundreds of software complexity measures [2], ranging 

from the simple, such as source lines of code, to the esoteric, such as the number of variable 

definition/usage associations. 

 

An important criterion for metrics selection is uniformity of application, also known as “open 

reengineering.” The reason “open systems” are so popular for commercial software applications 

is that the user is guaranteed a certain level of interoperability-the applications work together in 

a common framework, and applications can be ported across hardware platforms with minimal 

impact. The open reengineering concept is similar in that the abstract models used to represent 

software systems should be as independent as possible of implementation characteristics such as 

source code formatting and programming language. The objective is to be able to set complexity 

standards and interpret the resultant numbers uniformly across projects and languages. 

A particular complexity value should mean the same thing whether it was calculated from 

source code written in Ada, C, FORTRAN, or some other language. The most basic complexity 

measure, the number of lines of code, does not meet the open reengineering criterion, since it is 

extremely sensitive to programming language, coding style, and textual formatting of the source 



International Journal of Technology Management & Humanities (IJTMH) 

e-ISSN: 2454 – 566X, Volume 4, Issue 4, (December 2018), www.ijtmh.com 

December  2018 4 | P a g e www.ijtmh.com 

 

 

code. The cyclomatic complexity measure, which measures the amount of decision logic in a 

source code function, meets the open reengineering criterion. It is completely independent of 

text formatting and is nearly independent of programming language since the same fundamental 

decision structures are available and uniformly used in all procedural programming languages. 

 

3.3.2. Relationship Between Complexity and Testing 

There is a strong connection between complexity and testing, and the structured testing 

methodology makes this connection explicit. 

 

First of all, complexity is a common source of errors in software. This is true in both an abstract 

and a concrete sense. In the abstract sense, we can say that a highly complex software defeats 

the human mind's ability to perform accurate symbolic manipulations, and it results in errors. 

The same psychological factors that limit people's ability to do mental manipulations of more 

than the infamous "7 +/- 2" objects simultaneously apply to software. Structured programming 

techniques can push this barrier further away, but not eliminate it entirely. In the concrete sense, 

numerous studies and general industry experience have shown that the cyclomatic complexity 

measure correlates with errors in software modules. Other factors being equal, the more complex 

a module is, more likely to have errors. Also, beyond a certain threshold of complexity, the 

likelihood that a module contains errors increases sharply. Given this information, many 

organizations limit the cyclomatic complexity of their software modules in an attempt to 

increase overall reliability. 

 

Second, complexity can be used to allocate testing effort by leveraging the connection between 

complexity and error to concentrate testing effort on the most error-prone software. In the 

structured testing methodology, this allocation is precise- i.e. the number of test paths required 

for each software module is exactly the cyclomatic complexity. So the complexity gives the 

clear understanding about the testing efforts. Other common white box testing criteria have the 

inherent anomaly that they can be satisfied with a small number of tests for arbitrarily complex 

(by any reasonable sense of "complexity") software. Complexity Reduction although the amount 

of decision logic in a program is to some extent determined by the intended functionality, 

software is often unnecessarily complex, especially at the level of individual modules. 

Unnecessary complexity is an impediment to effective testing for three major reasons. First, the 

extra logic must be tested, which requires extra tests. Second, tests that exercise the unnecessary 

logic may not appear distinct from other tests in terms of the software's functionality, which 

requires extra effort to perform each test. Finally, it may be expended to identify the 

dependencies and show that the criterion is satisfied to the greatest possible extent. 

 

Unnecessary complexity also complicates maintenance, since the extra logic is misleading 

unless it’s unnecessary nature is clearly identified. Even worse, unnecessary complexity may 

indicate that the original developer did not understand the software, which is symptomatic of 

both maintenance difficulty and outright errors. This section quantifies unnecessary complexity, 

and discusses techniques for removing and testing it. 

4. Weighted Control Flow Graph 

There are different ways for depending upon characteristics of edges of Control Flow Graph in 

order to assign frequencies to nodes. Here we are discussing various methods for assigning the 

frequencies and out of all these methods we choose the most optimistic one to built weighted 

Control Flow Graph. 



International Journal of Technology Management & Humanities (IJTMH) 

e-ISSN: 2454 – 566X, Volume 4, Issue 4, (December 2018), www.ijtmh.com 

December  2018 5 | P a g e www.ijtmh.com 

 

 

The methods can be defined as follows: 

 

 No. of statements 

 Execution time 

 Memory used 

4.1. Number of Statements 

In this method frequencies are assigned to the edges of CFG on the basis of number of 

statements traversed from one node to another. Different control structure may contain same no. 

of statements or different no. of statements, within a same program if same control structure is 

defined more than once their frequency distribution may be same or different depending upon 

the no. of statements they contain in their definition. Thus within the same program edges of 

Control Flow Graph varies in their frequency distribution on the basis of no. of statements 

traversed by the pair of nodes which make the edge. In a recursive code, if similar edges are 

traversed more than once then its frequency is dependent only upon the no. of statements 

traversed through it. We recognize each statement by the symbol of semicolon in the statement 

since in C language each statement is terminated by semicolon. 

 

4.1.1. Example 

We are using a program in C language to show the frequency distribution. 

 
Frequency assignment using no. of 
statements each edge traverse 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3: Weighted CFG for No. of Statements 

#include<stdio.h> 

#include<conio.h> 
void main() 
{ 

int 
x[20],y=9,i,*u; 
for(i=0;i<y;i++) 

{ 

scanf(“%d”,&x[i]); 
printf(“%dth element is:”,x[i]); 
*u=x[i]; 

u++; 

} 

if(x[0]!=0) 

{ 

printf(“Given array is not empty”); 

} 

if(x[9]!=0) 

{ 

printf(“Given array is full”); 

} 

else 

{ 
printf(“Given array is not full”); 

} 

} 

else 

{ 

printf(“Given array is empty”); 

} 

getch(); 

} 



International Journal of Technology Management & Humanities (IJTMH) 

e-ISSN: 2454 – 566X, Volume 4, Issue 4, (December 2018), www.ijtmh.com 

December  2018 6 | P a g e www.ijtmh.com 

 

 

4.2. Execution Time 

In this method frequencies are assigned on the basis of time taken by the different statements 

present in the code i.e. in terms of graph it is the time taken by the edges to execute the 

statements covered by the connecting nodes. Using the concept of variation in time for executing 

different type of statements like simple print statement, initialization, and increment/decrement, 

computational, logical and other type of statements. Since the execution time is calculated in 

micro second so in this type of method the weight of CFG is assign in micro second. Depending 

upon compilation of program, some control statements take less time for execution and also 

preferred over others, some statements are executed recursively and some statements need to be 

executed before the execution of other group of statements. Therefore execution time of 

statements comprising the node varies dynamically and acts as a source of frequency distribution 

of nodes in Control Flow Graph. 

Frequency assignment using execution time (in micro second) of edges is shown below - 

 
 

Fig 4: Weighted CFG for Execution Time 

4.3. Memory Used 

In this method frequencies are assigned on the basis of memory used by group of statement 

covered by traversal of nodes. This method always assigned the frequencies in a dynamic 

manner to the edges depending upon the memory used by the statements of different type of 

control structures like if-else, for, while and switch. Memory utilization of statements of control 

structures such as if else, for, while, do while is totally depends upon their definitions or we can 

say that the operation they are going to perform on the basis of requirement of program under 

execution. We assign the memory to the statements on the basis of bytes used by the statements 

such as integer uses 2 bytes; floating point uses 4 bytes and so on. So in this method the weights 

are assigned in the form of byte to the nodes. It is a complex method due to dispatching between 

memory and processor for calculating the memory unit. 

 

Some edges are traversed many no. of times in a recursive manner where as other are executed 

only once, thus memory requirement of edges forming the Control Flow Graph varies and act as 

a source of frequency distribution. 



International Journal of Technology Management & Humanities (IJTMH) 

e-ISSN: 2454 – 566X, Volume 4, Issue 4, (December 2018), www.ijtmh.com 

December  2018 7 | P a g e www.ijtmh.com 

 

 

Frequency assignment using memory utilization of edges is shown below – 
 

Fig 5: Weighted CFG for Execution Time 

 

From the methods defined above for the frequency distribution, we find that the second method 

which is “number of statements” is easy to implement and shows more variation among the 

frequency of nodes in control flow graph. 

 

5. Finding Most Feasible Path 

After drawing weighted control flow graph by above mentioned methods next we have to find 

most feasible path in weighted control flow graph. For this purpose we have to compare the 

weights provided by the various alternatives (methods to calculate) to reach from one node to 

another. After comparing various alternatives finally we select the one path by which we have to 

make minimum effort. Like in no. of statement weight assigning method we select the path 

where we have to execute minimum statements, in execution time weight assigning method we 

have to select the path of minimum execution time and in memory used weight assignment 

method we have to select the path of minimum memory requirement. 

Finding feasible path through above mentioned weight assignment method (Using Memory and 

Execution time method). 

 

5.1. Example: Finding Feasible Path using Execution Time Weight Assignment Method 

 
Fig 6: Feasible Path Using Execution time 



International Journal of Technology Management & Humanities (IJTMH) 

e-ISSN: 2454 – 566X, Volume 4, Issue 4, (December 2018), www.ijtmh.com 

December  2018 8 | P a g e www.ijtmh.com 

 

 

 

5.2. Example: Finding Feasible Path using Memory Requirement Method 
 

Fig 7: Feasible Path Using Memory Requirement 

 

6. Conclusion 

In this paper we are taking a C program as input and producing a weighted control flow graph 

for further finding the most feasible path as an output. We are producing output by considering 

the program’s execution on the basis of time of execution and basis of memory consumption of 

each edge as described by weighted control flow graph. 

 

7. Future Scope 

As we are taking a C program as input and producing a weighted control flow graph as output 

and then finding out the most feasible path, in the same way the future researchers can create the 

same application for different programming languages like java, .net and c++ etc. 

 

References 

[1]. H. Zuse, “Software Complexity: Measures and Methods” De Gruyter, Berlin,(1991) 

[2]. I. Chowdhury, “Using Complexity, Coupling, and Cohesion Metrics as Early Indicators of 

Vulnerabilities” 

[3]. Ayman Madi, Oussama Kassem Zein And Seifedine Kadry: On the Improvement of Cuclomatic 

Complexity Mitric 

[4]. IEEE transactions on software engineering, volume 19, March 1992. 

[5]. Pressman r “Software engineering”, Tata McGraw Hills. 

[6]. Mall R, “Fundamentals of software Engineering’, Prentice Hall. 

[7]. Edvardsson, J., “A Survey on Automatic Test Data Generation,” in Proceedings of the Second 

Conference on Computer Science and Engineering, Linkoping pp. 21-29, October 1999. 

[8]. McMinn, P., “Search-based Software Test Data Generation: A Survey”. Software Testing, 

Verification and Reliability, 14(2), pp. 105-156, June 2004. 

[9]. McMinn, P., M. Holcombe, “Evolutionary TestingUsinganExtendedChaining Approach”, 

Evolutionary Computation, 14(1), pp. 41-64, 

[10]. Rumbaugh & Loresson W, “Object Oriented Modeling & Design”, PHI 1991. 


